On Delayed Logistic Equation Driven by Fractional Brownian Motion

نویسنده

  • Nguyen Tien Dung
چکیده

In this paper we use the fractional stochastic integral given by Carmona et al. [1] to study a delayed logistic equation driven by fractional Brownian motion which is a generalization of the classical delayed logistic equation . We introduce an approximate method to find the explicit expression for the solution. Our proposed method can also be applied to the other models and to illustrate this, two models in physiology are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stability Result for Stochastic Differential Equations Driven by Fractional Brownian Motions

We study the stability of the solutions of stochastic differential equations driven by fractional Brownian motions with Hurst parameter greater than half. We prove that when the initial conditions, the drift, and the diffusion coefficients as well as the fractional Brownian motions converge in a suitable sense, then the sequence of the solutions of the corresponding equations converge in Hölder...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Title Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H > 1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential eq...

متن کامل

A singular stochastic differential equation driven by fractional Brownian motion∗

In this paper we study a singular stochastic differential equation driven by an additive fractional Brownian motion with Hurst parameter H > 1 2 . Under some assumptions on the drift, we show that there is a unique solution, which has moments of all orders. We also apply the techniques of Malliavin calculus to prove that the solution has an absolutely continuous law at any time t > 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012